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Professor of Mathematics

BME Institute of Mathematics

Department of Stochatics

BME

2019



Contents

1 Preliminaries 3

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Mandelbrot percolation . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Construction of the Mandelbrot percolation fractal . . 4

1.3 A brief introduction to fractal geometry . . . . . . . . . . . . 7

1.3.1 Extinction probability, Hausdorff dimension and natu-

ral measure . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Orthogonal Projection of the set E 13

2.1 Condition A(α) and proof . . . . . . . . . . . . . . . . . . . . 14

2.2 Condition B(α) . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Homogeneous case . . . . . . . . . . . . . . . . . . . . 21

2.3 Hausdorff dimension and empty interior . . . . . . . . . . . . . 22

3 Projection of the natural measure 24

3.1 Projection of a measure . . . . . . . . . . . . . . . . . . . . . 24

3.2 Homogeneous case . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Horizontal and vertical projections . . . . . . . . . . . 27

1



CONTENTS

3.2.2 The general case . . . . . . . . . . . . . . . . . . . . . 32

4 Conclusions 37

2



Chapter 1

Preliminaries

1.1 Introduction

Fractals and self-similar sets are the topic of common interest for long time.

In the twentieth century mathematicians – mainly Benoit Mandelbrot noticed

that most of the fractals in nature or in real life are random fractals. This

thesis focuses on the so-called Mandelbrot percolation fractals or random

percolation sets, a family of random fractals. In a nutshell we have an initial

set, and we retain or throw away certain subsets of this initial set with given

probabilities and in the next level we do the same thing with the retained

squares and so on, for a precise definition see chapter 1.2.1. In our case the

initial set, and also the subsets are squares, and mostly the probabilities are

homogeneous meaning that they are all the same. In this thesis we give a

survey about some of the geometric measure theoretic properties in the above

mentioned homoegeneous case and some result from the last few years in the

inhomogeneous case. It is worth mentioning that Shmerkin and Suomala [10]
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CHAPTER 1. PRELIMINARIES

Figure 1.1: Seventh level approximation of realizations with M = 3 and prob-

abilities p1=((1/3,1/3,1/3),(1/3,1/3,1/3),(1/3,1/3,1/3)); p2=((0.5,0.4,0.7),

(0.5,0.4,0.9),(0.6,0.5,0.5)); p3=((1,0.9,0.89),(0.7,0.9,0.6),(1,0.9,0.98)).

gave a very detailed description on the properties of the homogeneous case,

but this text is rather focus on the antecedents of this big result.

1.2 Mandelbrot percolation

1.2.1 Construction of the Mandelbrot percolation frac-

tal

Let I := [0, 1]2 denote the unit square. For given M ≥ 2 integer and pi,j ∈

[0, 1] ∀(i, j) ∈ {0, 1, ...,M−1}2 probabilities the Mandelbrot percolation set

in the 2-dimensional Euclidean-space is constructed in the following way: let

Tn := {(in, jn) | in, jn ∈ {0, 1, ...,M − 1}n} denote the pairs of n-length

sequences from {0, 1, ...,M − 1} indexing the level n sub-squares of I, the

empty sequence is denoted by ∅, as follows T0 = (∅, ∅). Denote the first level
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CHAPTER 1. PRELIMINARIES

Figure 1.2: The partition.

sub-squares of I of side length
1

M
with Ii,j:

Ii,j :=

[
i

M
,
i+ 1

M

]
×

[
j

M
,
j + 1

M

]

This is a partition of the unit square into M2 congruent squares :

I =
M−1⋃
i,j=0

Ii,j.

We can define the level n squares similarly: if (in, j
n
) ∈ Tn then

Iin,jn =

[
n∑
k=1

ik ·
1

Mk
,

n∑
k=1

ik ·
1

Mk
+

1

Mn

]
×

[
n∑
k=1

jk ·
1

Mk
,

n∑
k=1

jk ·
1

Mk
+

1

Mn

]
.

Now we have the base for the fractal percolation set. The next step is to

define the survival set En consists of the index of the retained level n squares.

Definition 1.1. E0 = T0 = (∅, ∅) and inductively if we have En−1 and

(in−1, jn−1
) /∈ En−1 then for all (i, j) ∈ {0, 1, ...,M − 1}2 ((i1, ..., in−1, i),

(j1, ..., jn−1, j)) /∈ En, if (in−1, jn−1
) ∈ En−1 then ((i1, .., in−1, i), (j1, .., jn−1, j))

∈ En with probability pi,j.
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CHAPTER 1. PRELIMINARIES

We can also think about Tn as an M2-ary tree with height n and nodes

(ik, jk). An (ik, jk) node has M2 children: (iki, jkj) i, j ∈ M . For p =

(p0,0, ..., pM−1,M−1) we can introduce a probability measure Pp on the space of

labeled trees. For each node (i1...in, j1...jn) we give a random labelXi1...in,j1...jn

this will be 0 or 1. It is required that

1. Xi1...in,j1...jn are independent Bernoulli random variables;

2. P(X∅) = 1;

3. Pp(Xi1...in,j1..jn) = pin,jn .

Thus En = {i1...in, j1...jn : Xi1,j1 = Xi1i2,j1j2 = ... = Xi1...in,j1...jn = 1}. Now

the nth level approximation of E is En, defined by the survival set En:

En =
⋃

(in,jn)∈En

Iin,jn and from that E =
∞⋂
n=1

En.

The above defined E is random variable i.e. E: Ω→ {the Cantor sets of I2},

where Ω is an infinite randomly labeled tree, defined above.

Homogeneous and inhomogeneous case

I distinguish two cases, the homogeneous and the inhomogeneous, the first is

when all the squares are chosen with the same probability, so ∀(i, j) pi,j = p,

and the second is when the probabilities are not the same.

Independence

Although at every level the squares are selected or discarded independently

of each other it is not true that at a certain level the event that two distinct

6



CHAPTER 1. PRELIMINARIES

square is retained is independent – they are only conditionally independent.

For example look at the case when M = 3 and the probabilities are the

same p. P(I11,11 ⊂ E2, I11,12 ⊂ E2) = P(selecting the square with index 1,1

and than selecting the small square with index 11, 11 and 11,12)=p3 but

P(I11,11 ⊂ E2) = P(I11,12 ⊂ E2) = p2.

1.3 A brief introduction to fractal geometry

In this section I introduce two essential concept of fractal geometry namely

the Hausdorff measure and dimension, and the Box dimension.

Hausdorff measure and dimension

Let U be any non-empty subset of the Euclidean space, Rn, diam(U) =

sup{|x − y| : x, y ∈ U}. We call {Ui}i∈I a countable collection of sets a δ

-cover of U if ∀i ∈ I diam(Ui) < δ and U ⊂
⋃
i∈I
Ui. For δ > 0 we define

H s
δ (U) = inf{

∑
i∈I diam(Ui)

s : {Ui}i∈I is a δ-cover of U}.

Definition 1.2. The s-dimensional Hausdorff measure of U is

H s(U) = lim
δ→0

H s
δ (U). (1.1)

The limit exists, because as δ decreases the infimum increases and ap-

proaches a limit, which limit is usually infinity or zero. If we take a look

at the graph of H s(U) than we’ll see that there is a critical value of s at

which H s(U) jumps from infinity to zero. This critical value is called the

Hausdorff dimension of the set U. For a more precise explanation see [3].
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CHAPTER 1. PRELIMINARIES

Definition 1.3. The Hausdorff dimension of a set U is

dimH U = inf{s : H s(U) = 0} = sup{s : H s(U) =∞}. (1.2)

The following property of Hausdorff dimension and measure will be used

in Chapter 2.

Proposition 1.1. Let U ⊂ Rn, f : U → Rm be a mapping with Hölder

condition of exponent α i.e. |f(x) − f(y)| ≤ c · |x − y|α. Then ∀s ∈ R

H s/α(f(U)) ≤ cs/αH s(U).

For the proof see [3]. The next proposition easily follows from that:

Proposition 1.2. Let U ⊂ Rn, f : U → Rm be a mapping with Hölder

condition of exponent α. Then dimH f(U) ≤ (1/α) dimH U .

Box-dimension

Definition 1.4. F ⊂ Rn non empty, bounded. Nδ(F ) the smallest number

of sets of diameter at most δ which can cover F. The lower and upper box-

counting dimension of F respectively defined as

dimB(F ) = lim inf
δ→0

logNδ(F )

−logδ
(1.3)

dimB(F ) = lim sup
δ→0

logNδ(F )

− log δ
. (1.4)

If these are equal the box-counting dimension is

dimB(F ) = lim
δ→0

logNδ(F )

− log δ
. (1.5)

Proposition 1.3. If the above limit exists it is equivalent to count with the

smallest number of cubes of side δ that cover F, instead of Nδ(F ).
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CHAPTER 1. PRELIMINARIES

1.3.1 Extinction probability, Hausdorff dimension and

natural measure

Extinction probability

Let #En (En is defined in 1.1) denote the number of squares selected in the

nth approximation set En. {#En}n∈N is a branching process, with the same

offspring distribution as the distribution of #E1. Hence the probability of

our branching process does not die out, which is the same as the probability

of E is not empty is greater than 0 if and only if E(E1) > 1 or ∀(i, j) ∈

{0, . . . ,M − 1}2 pi,j = 1, where E(E1) =
∑

0≤i,j≤M−1

pi,j. In the homogeneous

case the expected number of retained squares in the first level is M2p, which

means that if p >
1

M2
then P(E 6= ∅) > 0.

Hausdorff dimension

The second important property of the Mandelbrot percolation set is the above

defined Hausdorff dimension of it. The formula for the Hausdorff dimension is

similar to the deterministic case, for self-similar sets. As Falconer [4] proved

the Hausdorff dimension of a random Cantor set E is given by

dimH(E) =
log(E(#E1))

logM
=

log
∑

0≤i,j≤M−1

pi,j

logM
(1.6)

almost surely conditioned on {E 6= ∅}. Later it will be important that the

Hausdorff dimension of the set E is greater than 1 if and only if E(#E1) > M .

Again in the homogeneous case – when E(#E1) = M2 ·p it is straightforward

that the above inequality holds if and only if p > M−1.
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CHAPTER 1. PRELIMINARIES

Natural measure on the set E

In this section we show a method to define measures on the Mandelbrot

percolation fractal. In particular we introduce two measures: the weak*

limit of µ̃n – the normalization of the two dimensional Lebesgue measure

restricted to the nth approximation set, which turns out to be a probability

measure, and the weak* limit of µn; another measure, which has a martingale

property in certain cases (see Chapter 3).

Theorem 1.1 (Riesz). Let X be a locally compact Hausdorff space. For any

bounded linear functional F on Cc(X) there is a unique regular Borel measure

µ on X such that

F (f) =

∫
X

f(x)dµ(x)

for all f in Cc(X). Moreover if F is positive than µ is positive too.

Let λn denote the n-dimensional Lebesgue measure, and λn|A the restric-

tion of the n dimensional Lebesgue measure for the set A. For every level

n approximation we can define a probability Borel measure in the following

way:

µ̃n(A) :=
λ2|En(A)

λ2(En)
=
λ2(En ∩ A)

#En ·M−2n
.

Now if we let n go to infinity, than we get the natural measure for the set E.

From [7] we know that µ̃n converges in weak* sense to a measure as n goes

to infinity so

µ̃ = lim
n

λ2|En
λ2(En)

. (1.7)

As Mauldin and Williams([7]) use a different – more general approach I will

sketch below the idea of the proof in our case. Let W = limn→∞
#En

E(#E1)n
.
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CHAPTER 1. PRELIMINARIES

From the theory of branching processes [1, page 9] we know that this limit

exists almost surely, and greater than 0 conditioned on non extinction. Fur-

thermore let E(in,jn),k = {(in+k, jn+k
) : the first n terms of in+k and j

n+k
is

the fixed in and j
n

respectively} denote the kth level offsprings of (in, jn),

and Win,jn
= limk

#E(in,jn),k

E(#E1)k
, we also know that W =

∑
in,jn∈En

1

Mnβ
Win,jn

which has the same distribution as
#En
Mnβ

Win,jn
and from that Win,jn

has

the same distribution as
Mnβ

#En
W . (Note that E(#E1)n = (

∑M−1
i,j=0 pi,j)

n).

Let β denote the Hausdorff dimension of the set E. Define a functional

F : Cc(R2)→ R such that F (f) = limn→∞
∑

in,jn∈En
f(sin,jn)

(
1

Mn

)β
where

sin,jn ∈ Iin,jn . Mauldin and Williams prove that for almost all ω realization

of the Mandelbrot percolation fractal and for all f ∈ Cc(R2) Fω is well de-

fined positive bounded linear functional with norm W (ω). This means by

Riesz theorem that there exists a regular Borel measure µω on R2 such that

Fω(f) =
∫
R2 f(x)dµω(x). Furthermore Mauldin and Williams prove that for

all A compact subset of R2

µ(A) = lim
n→∞

∑
in,jn∈En
Iin,jn

∩A 6=∅

(
1

Mn

)β
Win,jn

a.s.. (1.8)

Hence

µ(A) = lim
n→∞

∑
in,jn∈En
Iin,jn

∩A 6=∅

(
1

Mn

)β
Mnβ

#En
W =

lim
n→∞

∑
in,jn∈En
Iin,jn

∩A 6=∅

1

#En
W = W lim

n→∞

λ2|En(A)

λ2(En)
= W lim

n→∞
µ̃n(A).
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CHAPTER 1. PRELIMINARIES

And almost surely µ(E) = W . So as µ̃ =
µ

W
: µ̃ is a probability measure

defined on the Borel sets of R2.
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Chapter 2

Orthogonal Projection of the

set E

Among other geometrical properties, we can investigate the projection of our

Mandelbrot percolation sets. First Falconer and Grimmet [5] proved that

the projection to the coordinate axes contains an interval with probability 1

if ∀i
∑

j pi,j > 1 and ∀j
∑

i pi,j > 1 otherwise the projection almost surely

does not contain any interval. Later Simon and Rams [9] showed that this

can be generalized to all direction. It is straightforward that if the Hausdorff

dimension of E is strictly less than one, then the Hausdorff dimension of

the projection is strictly less than one by Proposition 1.2, as the projection

is Hölder continuous with exponent 1. It means that the one dimensional

Hausdorff measure of the set is 0, so the one dimensional outer Lebesgue

measure is zero too, which means, that it can not contain any interval. In

the next section I will introduce a condition which ensures almost sure non-

empty interior for the projection to all directions. We will not cover the

13



CHAPTER 2. ORTHOGONAL PROJECTION OF THE SET E

Figure 2.1: The modified projection

.

whole proof only the intuition behind the proof.

2.1 Condition A(α) and proof

For the above mentioned reason assume that the Hausdorff dimension of

E is strictly greater than 1, so
∑M−1

i,j=0 pi,j > M . Instead of looking at the

orthogonal projection to a line which has α angle to the x-axis, we will

investigate the non-orthogonal projection to one of the diagonals of E –

denoted with ∆α – depending on the size of α. If α ∈
(
0,
π

2

)
then ∆α is

the interval ([0, 0], [1, 1]), and if α ∈ (
π

2
, π) then ∆α is ([0, 1], [1, 0]). Denote

this projection with Π∆α
α : I → ∆α. Also let Lα(x) = (Π∆α

α )−1(x) denote the

segment through x ∈ ∆α with angle α in I (see Figure 2.1). Let φin,jn : I →

Iin,jn denote the contraction, namely φin,jn(x, y) := M−n(x, y) + tin,jn , where

tin,jn is the lower left corner of Iin,jn . Simon and Rams define Condition

14



CHAPTER 2. ORTHOGONAL PROJECTION OF THE SET E

Figure 2.2: Lα(x), Iα1 , Iα2 .

A(α): for a given α the percolation model satisfies it, if there exist closed

intervals Iα1 , I
α
2 in the interior of ∆α, and a positive integer rα such that Iα2 is

in the interior of Iα2 and for all x ∈ Iα2 the expected number of rα level small

squares which intersects Lα(x) in a point which contained in the φirα ,jrα
(Iα1 )

interval is greater or equal than 2 (see Figure 2.2).

If that condition is satisfied for a given α then the projection contains an

interval with positive probability. For the proof Simon and Rams use large

deviation estimation, the robustness of Condition A(α) and the statistical

self similarity of the set. The robustness of A(α) means that there is small

neighborhood of α such that if Condition A(α) holds, then it holds in that

small neighborhood too, and in that neighborhood we can use the same I1, I2

intervals and rα integer. To see this choose δ to be the greatest number such

that the δ-neighborhood of I1 is still in the interior of I2, as these are closed

δ is positive. Let I3 denote the closure of the
δ

2
neighborhood of I1. Now

if τ ∈ [α − δ

3M rα
, α +

δ

3M rα
] then the maximum distance between Lα(x)

15



CHAPTER 2. ORTHOGONAL PROJECTION OF THE SET E

and Lτ (x) in I × I is less than
δ

2M rα
which means that those small squares

which Lα(x) intersects in a point in φir,jr(I1), intersects Lτ (x) in a point

in φir,jr(I3), call it intersection in the right way. The extract of the proof is

the following. First we show that if Condition A(α) hold for a given α then

the interior of the projection will not be empty, thus we can conclude that

if H ⊂ (0, pi/2) and for all α ∈ H Condition A(α) holds then for all α ∈ H

for almost all realization projαE contains an interval. This means that for

every α ∈ H the set of bad realizations has measure 0. On the second part

we show that we can state something stronger (see 2.1) namely that if H has

certain properties then the union for α ∈ H of bad realizations has measure

0 even if H is an uncountable set. Assume that Condition A(α) holds with

I1, I2, r. Let Dn(x, I, α) = {(in, jn) : Lα(x) intersects φin,jn(I)}, and Vn(x) =

#{(inr, jnr) ∈ Enr ∩Dnr(x, I1, α)} the number of level n · r squares we kept,

which intersects Lα(x) in the right way. We will show that I1 is contained

16



CHAPTER 2. ORTHOGONAL PROJECTION OF THE SET E

in the projection with positive probability, so for all x ∈ I1 at every level we

can find squares which we kept, and the projection of the square contains x,

more precisely – to be able to use statistical self similarity – the projection

contains x in the middle. For that define a finite set Xn such that Xn contains

the endpoints of I1 and the distance between its points is less or equal than

δM−nr, where δ = sup{d : Bd(I1) ⊂ I2}. in that way the size of Xn will be

relatively small (#Xn ≤ cδM−nr), and the Iinr,jnr squares which intersects

Lα(xm) in φinr,jnr(I1) will intersect Lα(xm−1) and Lα(xm+1) in φinr,jnr(I2)

(So ∀y ∈ [xm−1, xm+1] : Dnr(xm, I1, α) ⊂ Dnr(y, I2, α)) By Condition A(α)

this means that the expected number of level (n + 1)r level squares which

intersects Lα(xm±1) in the right way is at least twice as much as those which

intersects Lα(xm) in the almost right way – in some φinr,jnr(I2). Using this if

Vn(xn) ≥ (3/2)n ∀xn ∈ Xn than for each level n · r square which we counted,

the expected number of offsprings is greater or equal than 2. As 3/2 < 2

and the number of squares is greater or equal than (3/2)n using the Chernoff

bound we get the following for all xn+1 ∈ Xn+1:

P
(
Vn+1(xn+1) < (3/2)n+1|∀xn ∈ Xn Vn(xn) ≥ (3/2)n

)
≤ e−(3/2)nI(3/2)

hence there exist a 0 < Γ < 1 such that:

P
(
Vn+1(xn+1) < (3/2)n+1|∀xn ∈ Xn Vn(xn) ≥ (3/2)n

)
≤ Γ(3/2)n

thus:

P
(
Vn+1(xn+1) ≥ (3/2)n+1|∀xn ∈ Xn Vn(xn) ≥ (3/2)n

)
< (1− Γ(3/2)n)

17



CHAPTER 2. ORTHOGONAL PROJECTION OF THE SET E

which means using conditional independence and that #Xn+1 ≤ cM (n+1)r:

P
(
∀xn+1 ∈ Xn+1 : Vn+1(xn+1) ≥ (3/2)n+1|∀xn ∈ Xn : Vn(xn) ≥ (3/2)n

)
<
(
1− Γ(3/2)n

)cM(n+1)r

.

As V0(x) ≥ (3/2)0

P
(
∀n∀x ∈ Xn : Vn(x) ≥ (3/2)n

)
≥ P(V0 ≥ 1)

∏
n

(
1−Γ(3/2)n

)cM(n+1)r

> 0.

The last inequality holds, because the product converges to non zero num-

ber if and only if the sum
∑

n log
[
(1−Γ3/2n)cM

(n+1)r]
=
∑

n cM
(n+1)r log

(
1−

Γ(3/2)n
)
≤
∑

n cM
(n+1)rΓ(3/2)n converges, and it does. With this we are ready,

because if x is contained in I1 but ∃n such that x /∈ Xn, at every n · r we can

find xn ∈ Xn such that xn is close enough to x and those level n · r squares

which project to xn project to x too as Dnr(xn, I1, α) ⊂ Dnr(x, I2, α). Using

statistical self similarity this means that for all n for all level n small square

in En the probability that their projection does contain an interval is ε > 0.

So P(the projection of E contains no interval conditioned on E is not empty)

≤ P(#En < N |E 6= ∅) + (1 − ε)N . The first part tends to 0 as n → ∞ and

then as N → ∞ the expression tends to 0. For set of angles the proof is

modified in a way that we estimate the probability of the unwanted event

not just for a finite set of points in ∆α but for a finite set of directions too,

this again is a relatively small set compared to the super-exponentially small

probability of the unwanted event. For a similar proof see Chapter 3.2.2.

For the final result consider a compact set K of angles. By the robustness

of Condition A for every α ∈ K there exists an interval where Condition

A(α) is satisfied. We can choose this interval to have rational endpoints (call

18



CHAPTER 2. ORTHOGONAL PROJECTION OF THE SET E

this interval Jα), and a set of these makes a countable cover of K, so as K

is compact, there is a finite cover of K with the sets {Jαi,i}ki=1. For all i

for almost all realization for all τ ∈ Jαi,i the projection contains an interval.

This means that for all i ∈ {1, 2, . . . , k} the set of bad realizations (which

projection has empty interior) has measure zero, so the finite union of these

realizations is a zero measure set too, and we are done.

Theorem 2.1. If K ∈ [0, 2π] a compact set of angles, and ∀α ∈ K Condition

A(α) is satisfied, than for almost all realizations for all α ∈ K projα(E)

contains an interval.

2.2 Condition B(α)

In most cases Condition A(α) is not easy to check, so Simon and Rams in-

troduce Condition B(α) which implies Condition A(α), and which can easily

be checked for example in the homogeneous case. For this we introduce

some more notation, to be able to define Condition A(α) more precisely.

First recall, that Π∆α
α is the projection onto the diagonal of I: ∆α and

φin,jn is the contraction of I to Iin,jn . Let ψα,in,jn denote the inverse of

Π∆α
α ◦ φin,jn : ∆α → ∆α.

Fαf(x) =
∑
(i,j)

x∈Π∆α
α (Ii,j)

pi,j · f ◦ ψα,i,j(x) (2.1)

and similarly

F n
α f(x) =

∑
(in,jn)

x∈Π∆α
α (Iin,jn

)

pin,jn · f ◦ ψα,in,jn(x) (2.2)

19



CHAPTER 2. ORTHOGONAL PROJECTION OF THE SET E

Definition 2.1 (Condition A(α)). The fractal percolation model satisfies

condition A(α) if there exist closed intervals Iα1 , I
α
2 ⊂ ∆α and a positive

integer rα such that:

(i) Iα1 ⊂ int Iα2 ;

(ii) Iα2 ⊂ int ∆α;

(iii) F rα
α 1Iα1

≥ 21Iα2 .

Definition 2.2 (Condition B(α)). A fractal percolation model satisfies Con-

dition B(α) if there exist a continuous function f : ∆α → R such that f is

strictly positive except at the endpoints of ∆α and Fαf ≥ (1 + ε)f for some

ε > 0.

Proposition 2.1. Condition B(α) implies Condition A(α).

Proof. Assume that Condition B(α) holds for some f and ε. In the first part

of the proof I will show that we can choose non-empty closed intervals I1 ⊂

intI2 and I2 ⊂ int∆α such that for

g1 = f |I1 , g2 = f |I2 : Fαg1(x) ≥ (1 + ε/2) · g2(x) ∀x ∈ I2. (2.3)

Let W := {x ∈ ∆α : ∃ 0 ≥ i, j,≥ M, x = Π∆α
α (i/M, j/M)} the projection

of the mesh 1/M grid points in I. Let W0 denote the two endpoints of ∆α,

and W1 = W \W0. And let η > 0 be fixed such that:

ε

2
· min
x∈Bη/M (W1)

f(x) > (M + 1)2 sup
x
{f(x) : x ∈ Bη(W0)}. (2.4)

If we let I1 be ∆α \ Bη(W0) and I2 to be ∆α \ Bη/M(W0) then equation 2.3

holds, because I2 = (∆α \Bη/M(W )) ∪Bη/M(W1).
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1. If x ∈ ∆α \ Bη/M(W ) then Fαg1(x) = Fαf(x) ≥ (1 + ε)f(x) ≥ (1 +

ε/2)g2(x).

2. And if x ∈ Bη/M(W1) then Fαg1(x) ≥ Fαf(x)− (M + 1)2‖f − g1‖∞ ≥

(1 + ε/2)f(x) + (ε/2f(x)− (M + 1)2‖f − g1‖∞) and as the second part

is greater than 0 by the definition of η: Fαg1(x) > (1 + ε/2)g2(x).

Now let r be the smallest integer satisfying(
1 +

ε

2

)r
≥ 2 · maxx∈I1 g1(x)

minx∈I2 g2(x)

with this choice of r:

F r
α1I1(x) ≥ F r

α

g1(x)

maxx∈I1 g1(x)
=

1

maxx∈I1 g1(x)
F r
αg1(x) ≥

(1 + ε/2)r

maxx∈I1 g1(x)
g2(x) ≥ 2

g2(x)

minx∈I2 g2(x)
≥ 21I2(x) for all x ∈ I2.

2.2.1 Homogeneous case

Proposition 2.2 (Non empty interior in the homogeneous case). If ∀(i, j) ∈

{1, . . . ,M − 1}2 pi,j = p and dimH E > 1 or equivalently p > 1/M then

Condition A(α) is satisfied for all α ∈ (0, 2π).

Proof. Let fα(x) = |Lα(x)|, the length of the line segment through x in with

angle α. f is obviously continuous, and

Fαf(x) = p
∑
(i,j)

M · |Lα ∩ Ii,j| = M · p · f(x) ≥ (1 + ε)f(x)

as M · p > 1. Which means Condition B(α) is satisfied and so Condition

A(α).

21



CHAPTER 2. ORTHOGONAL PROJECTION OF THE SET E

Using this and the above mentioned result of Falconer and Grimmet we

can conclude that in the homogeneous case the projection almost surely

contains an interval for all angle.

2.3 Hausdorff dimension and empty interior

At this point we can ask the question, whether it is true that Mandelbrot

percolation fractals with Hausdorff dimension greater than 1 has non-empty

interior for almost all realization for all angle. The answer is yes in the

homogeneous case, but in general no if the probabilities are not the same.

Let me show a family of counterexamples.

Example

Let Σ be a subset of {0, 1, . . . ,M−1}×{0, 1, . . . ,M−1} and #Σ > M denote

Λ the attractor of Ψ = {Fω}ω∈Σ, where Fk,l(x, y) =
1

M
(x, y)+

1

M
(k, l). From

[2] we know that

Proposition 2.3. M - #Σ, than for every fixed τ ∈ [0, π/2) such that

tan τ ∈ Q and a ∈ Πy
τΛ = [− tan τ, 1]

dimB Lτ (a) <
log #Σ

logM
− 1 for Lebesgue almost all a ∈ Πy

τ . (2.5)

Where Πy
τ (x, y) = y − x tan τ the projection to the y-axis with angle

τ and Lτ (a) is the intersection of the line through a with angle τ and Λ.

Construct E in the way that M/#Σ < 1 and ∀(i, j) ∈ Σ pi,j = p and

otherwise pi,j = 0, where p >
M

#Σ
i.e. dimH E > 1. Following the proof in

[11] I will show that for any τ ∈ [0, π/2) such that tan τ ∈ Q ∃pτ >
M

#Σ
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such that for
M

#Σ
< p < pτ the projected percolation set Πy

τ (E) has empty

interior almost surely. By Proposition 2.3 for Lebesgue almost all a ∈ Πy
τ (I)

dimB Lτ (a) =
log((#Σ/M)(1− ετ ))

logM
for ετ > 0. Let Λτ,a,n = {(in, jn) ∈ Σ :

Lτ (a) ∩ Iin,jn ∩ Λ 6= ∅} and Nτ,a,n = #Λτ,a,n and Eτ,a,n = En ∩ Λτ,a,n. As
logNτ,a,n

logMn
converges to the box dimension of the set ∃ñ depending on τ, a s.t.

∀n > ñ
logNτ,a,n

logMn
<

log(#Σ/M(1− ετ )(1 + ετ ))

logM

Nτ,a,n <
(#Σ

M

)n
(1− ετ )n

E(#Eτ,a,n) < Nτ,a,np
n

the last expression tends to zero if p <
M

#Σ

1

(1− ετ )2
. From the Markov

inequality for all δ > 0:

P(#Eτ,a,n > δ) <
E(#Eτ,a,n)

δ
<
Nτ,a,np

n

δ
→ 0 as n tends to ∞

which means that the number of squares project to a for almost all a in Πy
τI

tends to 0, so the interior will be empty.
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Chapter 3

Projection of the natural

measure

3.1 Projection of a measure

Recall that the natural measure on En is µ̃n =
λ2|En
λ2(En)

and on E µ̃ =

limn
λ2|En
λ2(En)

regular measures on the Borel sets of R2 supported on En and E

respectively. It is possible to define the projection of measures, as the push

forward measure by the measurable function – with respect to the Borel sigma

algebra – projα : I → projα(I). Where projα(x, y) = x cos(α)+y sin(α). The

projected measure will be the following: ∀A ∈ B(projα(I)):

proj∗αµ(A) = µ(proj−1
α (A))

Denote the projected measure with µα. As µ and µn are Radon or regular

measures µα and µαn are Radon measures too (A proof can be found in [6, page

16]). Our goal in this section is to show cases when this projected measure
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is absolute continuous with respect to the Lebesgue measure, moreover to

show that the density is Hölder continuous.

3.2 Homogeneous case

As I mentioned above the Mandelbrot percolation set with homogeneous

probabilities has a.s. not empty interior in the case when dimH E > 1. And

as Peres and Rams show the projected measure is also absolutely continuous

with respect to the Lebesgue measure and also Hölder continuous in every

direction except the vertical and horizontal one. More precisely Peres and

Rams prove the following theorem.

Theorem 3.1. Assume Mp > 1. If E is non-empty then almost surely all the

projections µα =proj∗αµ are absolutely continuous with respect to the Lebesgue

measure. Moreover, almost surely the density of µα is Hölder continuous for

α 6= 0, π/2. For the horizontal and vertical projections the density of the

projected measure will in general be undefined at the M-adic points, but it

will almost surely be Hölder continuous in the metric

ρ(x, y) = exp(− logM ·min{` : ∃m : x < mM−` < y})

everywhere except at the M-adic points.

Recall that W = limn→∞ E(#E1)−n#En, in the homogeneous case W =

limn→∞(M2p)−n#En. In that case µ̃ = limn→∞
λ2|En
pnW

. In our case it is better

to use µn =
λ2|En
pn

which converges to µ = Wµ̃, because it has an important

property which has a key role in proving absolute continuity, namely that it
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is a martingale with respect to the sigma algebra generated by the survival

set En:

E(µn+1 | En) = µn. (3.1)

To see that it is true consider the following:

E(µn+1 | En) = p−n−1
∑

(in,jn)∈En

M2∑
k=1

p · λ2|Iin,jn
M2

= p−n−1
∑

(in,jn)∈En

p ·λ2|Iin,jn =

λ2|En
pn

Note that this does not hold in general when the probabilities are not the

same. Now focus on the projected measure µαn. As it is absolutely continuous

with respect to the Lebesgue measure it has a density function yαn , which

also has a martingale property. The first part of the proof is an estimation

of yαn+1(x) with yαn(x).

yαn(x) =

∣∣Lα(x) ∩ En
∣∣

pn
(3.2)

Where Lα(x) is proj−1
α (x) the line through x with angle α. Define a random

variable, the length of the intersection of the line segment Lα(x) and Iini,jnj

if ini, jnj ∈ En+1:

Y (in, jn;x;α) :=
∣∣Lα(x) ∩ Iin,jn ∩ En+1

∣∣. (3.3)

yαn+1(x) =
1

p−n−1

∑
(in,jn)∈En

Y (in, jn;x, α) (3.4)

Proposition 3.1. Let Xi be a family of independent bounded random vari-

ables with E(Xi)=0 and ‖Xi‖ = supω|Xi|(ω) ≤ 1. If S =
∑
Xi and

Γ =
∑
‖Xi‖ then for all a > 0:

P(S > a) ≤ exp(−a2/2Γ) (3.5)
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Proposition 3.2. There exist C1 > 0 and γ < 1 such that the following

statements are true.

(i) If x, α, En satisfy yαn(x) > 1 then

P
(
yαn+1(x) < yαn(x) + p−nM−n(pnMnyαn(x))2/3|En

)
> 1− C1γ

(pM)n/3

(ii) If x, α, En satisfy yαn(x) < (pM)n/3 then

P
(
|yαn+1(x)− yαn(x)| < (pM)−n/6|En

)
> 1− C1γ

(pM)n/3

Proof. For the first part: if we choose Xin,jn
= Mn(Y (in, jn;x, α)− p|L α

x ∩

Iin,jn|)/
√

2 and a = 1/
√

2p(pnMnyαn(x))2/3 the assertion follows from Propo-

sition 3.1. And for the second part choose a = 1/
√

2p(pM)5n/6. For more

details see [8, page 544]

3.2.1 Horizontal and vertical projections

The case of the horizontal and the vertical projection is the same by symmet-

rical reasons, so consider the vertical projection. Let Kin
denote the M-adic

interval with length M−n and with index in. In the vertical case y
π/2
n – which

in this section I will denote with yn – is constant on the M-adic intervals of

level n, so let y′n(in) = yn(x) if x ∈ Kin
.

Let N0 be the smallest number for which

1 + (pM)−N0/3 < (pM)1/8 (3.6)

holds. This N0 surely exists, as pM > 1, so for a large N0 (pM)−N0/3 is

close to 0 and also (pM)1/8 is still greater than 1. As 1 + (pM)−5N0/3 <
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1 + (pM)−N0/3 < (pM)1/8 < (pM)1/4 :

1 + (pM)−5N0/3 < (pM)1/4 (3.7)

also holds.

Proposition 3.3. If N > N0 and y′N(iN) < (pM)N/4 than for all x ∈ KiN

P
(
∀n ≥ N |yn+1(x)− yn(x)| < (pM)−n/6|EN

)
≥ 1− C1

∞∑
m=N

γ(pM)m/3 (3.8)

and also

P
(
∀n ≥ N ∀x ∈ Kin |yn+1(x)− yn(x)| < (pM)−n/6|EN

)
≥

≥ 1− C1
∞∑

m=N

Mm−Nγ(pM)m/3 . (3.9)

Proof. From the second part of Proposition 3.2 we know that if yN(x) <

(pM)N/3 then P(|yαN+1(x) − yαN(x)| > (pM)−N/6|EN) < C1γ
(pM)N/3 . Let Qk

be the event that the event above happens for all n up to k, namely

Qk = {n = N, . . . , k |yn+1(x)− yn(x)| < (pM)−n/6}

and Q∞ the event in the proposition.

P
(
Qc
∞|EN

)
= P

(
Qc
N |EN

)
+ P

(
QN ∩Qc

N+1|EN
)
+

+ P
(
QN ∩QN+1 ∩Qc

N+2|EN
)

+ · · · < P
(
|yN+1(x)− yN(x)| > (pM)−N/6

)
+

+P
(
|yN+2(x)−yN+1(x)| > (pM)−(N+1)/6|QN ∩EN

)
+ · · · < C1

∞∑
m=N

γ(pM)m/3

The last inequality holds because we can use Proposition 3.2 as if Qk happens,

then for k + 1 yk+1(iki) < (pM)(k+1)/4 as |yk+1(x) − yk(x)| < (pM)−k/6 so
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yk+1(x) < yk(x) + (pM)−k/6 < (pM)k/4 + (pM)−k/6 < (pM)(k+1)/4. The

last inequality holds because k ≥ N0 so 1 + (pM)−5k/12 < (pM)1/4, which

multiplied with (pM)k/4 gives the inequality. The proof of the second part

is similar, only it has to happen for all n and for all Mn−N sequences in

beginning with iN .

Proposition 3.4. There exist an L > 1 such that for all n > LN0 and for

all x:

P
(
yn(x) < (pM)n/4

)
> 1− C1

n∑
m=n/L

γ(pM)m/3 .

Proof. There will be three time periods. The first period, when m ∈ [0, N0],

will be out of our interest. For the second period, m ∈ [N0, l0] ym(x) might

be large, but we will show that 1/m logpM ym(x) will be decreasing, and

eventually decreasing below 1/4. For the third period, when m ≥ l0 ym(x) <

(pM)m/4 and thus we can apply Proposition 3.3.

Start with the second period: if yN0 ≤ (pM)N0/4 then the second period does

not exist and we can jump to the third period immediately. If yN0 > (pM)N0/4

then the second period exist, and as long as ym(x) > 1 by Proposition 3.2,

and Equation 3.6:

ym(x) + (pM)−m((pM)mym(x))2/3 = ym(x)(1 + (pM)−m/3ym(x)−1/3)

≤ ym(x)(pM)1/8

so by Proposition 3.2:

P
(

logpM ym+1(x) < logpM ym(x) + 1/8
)

= P
(
ym+1(x) < ym(x)(pM)1/8

)
≥ P

(
ym+1(x) < ym(x) + (pM)−m((pM)mym(x))2/3

)
≥ 1− C1γ

(pM)m/3

29



CHAPTER 3. PROJECTION OF THE NATURAL MEASURE

hence logpM ym+1(x) < logpM ym(x) +
1

8
with high probability. Thus, if the

event in Propoisition 3.1 holds for each m ≥ N0 then:

ylN0(x) ≤ ylN0−1(x)(pM)1/8 ≤ · · · ≤ yN0(pM)N0(l−1)/8

|Lπ/2(x) ∩ EN0| ≤ 1 hence yN0(x) ≤ p−N0

ylN0(x) ≤ (pM)N0(l−1)/8p−N0 .

This means that logpM ym(x) < (pM)m/8 − N0 logpk p therefore eventually

1/m logpM ym(x) will be less than 1/4 (if the events in Proposition 3.2 ii

happens for all m ≥ N0). Let l0 be the smallest number for which this

happens (yl0(x) < (pM)l0/4), and define L:

L = d−8 logpM pe+ 1

As (pM)LN0/4 ≥ p−2N0(pM)N0/4 > p−2N0 = (pM)(L−1)N0/8p−N0 l0 ≤ LN0.

From the proof of Proposition 3.2 if N > N0 and yN(x) < (pM)N/4 then for

any n ≥ N

P(N ≤ m ≤ n |ym+1(x)− ym(x)| < (pM)−m/6|EN) ≥ 1− C1

n∑
m=N

γ(pM)m/3 .

(3.10)

The assertion holds for n ≥ LN0 if for all n ≥ m ≥ N0 the event in Proposi-

tion 3.2 ii happens, and the event in equation 3.10 holds with N = l0, but if

the first event happens up to l0 and the second from l0 then the first happens
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from l0. From this

P(yn(x) < (pM)n/4)

≥ max
l0

[(
1− C1

l0−1∑
m=N0

γ(pM)m/3
)(

1− C1

n∑
m=l0

γ(pM)m/3
)]

> 1− C1

n∑
m=n/L

γ(pM)m/3

Using Propositions 3.3 and 3.4 we can prove the last Proposition of this

section, which leads us to the main result of this section.

Proposition 3.5. There exists b < 1 such that almost surely there exist

C2 > 0 such that for all x ∈ [0, 1] except the M-adic points and for all

N > LN0 we have ∣∣∣∣yN(x)− lim
n→∞

yn(x)

∣∣∣∣ < C2b
N

Proof. If N > LN0 then for all iN for all x ∈ Kin
for all m ≥ N

P
(
|yN(x)− ym(x)| >

m∑
n=N

(pM)−n/6
)

≤ P
( m∑
n=N

|yn(x)− yn+1(x)| >
m∑

n=N

(pM)−n/6
)

≤ P
(
yN(x) > (pM)N/4

)
+

m∑
n=N

P(∀x ∈ KiN |yn(x)− yn+1(x)| > (pM)−n/6 | ∀x ∈ KiN yn(x) < (pM)n/4)

≤ C1

N∑
n=N/L

γ(pM)n/3 + C1

m∑
n=N

MN−nγ(pM)n/3
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If we let m→∞, and taking the complement event then we get:

P
(

lim
n→∞

yn(x) exists and |yN(x)− lim
n→∞

yn(x)| < 1

1− (pM)−1/6
(pM)−N/6

)
≥ 1− C1

N∑
n=N/L

γ(pM)n/3 − C1

∞∑
n=N

MN−nγ(pM)n/3 =: pN

Let pN denote the probability as written above, and y(x) = limn→∞ yn(x)

when it exists. Also for n ≥ LN0 let Qn be the event that ∃jn x ∈ Kjn

|yn(x) − y(x)| > 1

1− (pM)−1/6
(pM)−N/6. As P(Qn) < Mn(1 − pn) and∑∞

n=LN0
Mn(1 − pn) ≤ C1

∑∞
n=LN0

∑∞
m=n/LM

mγ(pM)m/3 < ∞. By Borel-

Cantelli Lemma P(lim supnQn) = 0 which means that Qn happens for only

finitely many n almost surely, which means, that ∃N1 such that the event

happens for all M -adic intervals of level greater than N1 almost surely.

As yN(x) is constant on the M -adic intervals of level N for any x, y ∈

(lM−N , (l + 1)M−N):

|y(x)− y(y)| < 2C2b
N

3.2.2 The general case

The main part of this section is to prove a similar statement as in Proposi-

tion 3.4 with a difference that the statement must hold for all α ∈ (0, π/2)

directions (just these, again because of the symmetry), as the statement is

similar, we are going to use the same tool-box only with a little modification.

The essence of the method is similar to the method seen in the last chapter,

in the proof by Simon and Rams, namely we choose finitely many points and

finitely many directions, and use that the points in a small enough neigh-

borhood acts similarly. We need this because unlike the other case, here the
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density functions are not constant on a small interval, also we have a set

of directions not just one. Like in chapter two we change the range of the

projection to the well-known ∆, this will change the densities, but only with

a multiplicative constant.

Proposition 3.6. There exists b < 1 such that almost surely the following

holds. For every δ > 0 there exists a C3 > 0 and N2 > 0 such that for

all N > N2, for all pairs of points x, y ∈ ∆, |x − y| < M−N−1 and for all

α ∈ [δ, π/2− δ] we have∣∣∣∣ lim
m→∞

yαm(x)− lim
m→∞

yαm(y)

∣∣∣∣ < C3b
N

In particular, the limits exist everywhere.

Before the proof, we need some preparation: first of all Y (in−1, jn−1;x, α)

is Lipschitz function in x and α, as it is the density function of the pro-

jection of the Lebesgue measure restricted to squares. Let the Lipschitz

constant be in a form of C4δ
−1/2, where C4 is depending on p,M, δ. As

yn(x) = p−n
∑

in,jn∈En−1 Y (in−1, jn−1;x, α), and #En is not greater than 2Mn,

we have:

|yαn(x)− yαn(y)| ≤ 2C4p
−nMnδ−1|x− y|

|yα1
n (x)− yα2

n (x)| ≤ 2C4p
−nMnδ−1|α1 − α2| (3.11)

Define two sequence: {αn,j} ⊂ [δ, π/2−δ] and {xn,i} ⊂ ∆ both δC4p
5n/6M−7n/6-

dense, and so can be chosen in a way that both contains at most C5δ
−1p−5n/6M7n/6

elements. Let Tn,j = {α ∈ [δ, π/2− δ] : ∀l 6= j|αn,l−α| ≥ |αn,j − α|}, and also

Wn,i = {x ∈ ∆ : ∀l 6= i|xn,l − x| ≥ |xn,j − x|}. These sets covers [δ, π/2− δ]

and ∆ respectively, and ∀α ∈ Tn,i |α − αn,i| ≤ δ/2C−1
4 p5n/6M−7n/6 and
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∀x ∈ Wn,j |x − xn,j| ≤ δ/2C−1
4 p5n/6M−7n/6. Which implies that ∃ C6 > 0

such that ∀n > 0 ∀x ∈ Wi,n and α ∈ Tn, j

|yαn(x)−yαn,,jn (xn,i)| ≤ |yαn(x)−yαn(xn,i)|+|yαn(xn,i)−yαn,,jn (xn,i)| < C6(pM)−n/6

(3.12)

Now let J ⊂ ∆ an interval of length M−N , if we choose n such that

N >
7n

6
+

5n

6
logM

1

p
+ logM

C4

δ

then the variation of yαn in I is – by the Lipschitz property – bounded

above by the Lipschitz constant times the length of the interval, in this

case M−NC4p
−nMnδ−1 which by the definition of n is less than (pM)−n/6,

hence for each α the variation of yαn inside J is not greater than (pM)−n/6.

Thus the next proposition holds:

Proposition 3.7. There exist L′, L′′ > 0 such that for any N if J ⊂ ∆ is

an interval of length M−N and n ≤ L′N − L′′ then for each α the variation

of yαn in J is not greater than (pM)−n/6.

The next proposition is similar to Proposition 3.3, but we have to change

the value of N0, namely let N0 be the smallest number for which

1 + (pM)−N0/3 + 2C6(pM)−N0/6 < (pM)1/8

Proposition 3.8. If for n > N0, j and ∀x ∈ J : y
αn,j
n (x) < (pM)n/3, then

P(∀m ≥ n ∀x ∈ J ∀α ∈ Tn,j |yαm+1(x)− yαm(x)| < (2C6 + 1)(pM)−n/6)

> 1− C1C
2
5δ
−2p−5n/3M7n/3

∞∑
m=n

γ(pM)m/3
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Proof. First what we need to do is make a mesh in J × Tn,j with the same

properties as above. In that way at every level we work with a finer and

finer mesh, and also we know what happens at the grid points, and we

can approximate what happens in between them. The first level mesh is

Jn+1,i × Tn+1,j.

∣∣yαm+1(x)− yαm(x)
∣∣ ≤ ∣∣yαm+1(x)− yαm,jm+1(xm,i)

∣∣+
∣∣yαm,jm+1(xm,i)− yαm,jm (xm,i)

∣∣
+
∣∣yαm,jm (xm,i)− yαm(x)

∣∣
hence for n+1 using equation 3.12 and Proposition 3.2:

P(∃x ∈ J ∃α ∈ Tn,j
∣∣yαn+1(x)− yαn(x)

∣∣ > (2C6 + 1)(pM)−n/6)

≤ P(∃i ∃x ∈ Jn+1,i ∃k ∃α ∈ Tn,j ∩ Tn+1,k

∣∣yαn+1(x)− yα(n+1),j

n+1 (x(n+1),i)
∣∣

+
∣∣yαn+1,k

n+1 (xn+1,i)− y
αn+1,k
n (xn+1,i)

∣∣+
∣∣yαn+1,k
n (xn,i)− yαn(x)

∣∣
> (2C6 + 1)(pM)−n/6)

≤ P(∃xn+1,i ∈ Jn+1,i∃α ∈ Tn+1,k

∣∣yαn+1,j

n+1 (xn+1,i)− y
αn+1,k
n (xn,i)

∣∣ >
(pM)−n/6) < C1C

2
5δ
−2p−5n/3k7n/3γ(pM)n/3

thus, using the method as in the proof of Proposition 3.3 the assumption can

be proven.

Let N > (LN0 + L′′)/L′ and let n = bL′N − L′′c. We can choose Ji

intervals with length M−N in ∆ such that ∀x, y,∈ ∆ if |x − y| ≤ M−N−1

then ∃i:x, y ∈ Ji, the number of these intervals is less than 4MN . Now we

can use Proposition 3.3 and Proposition 3.7 to give a lower bound for the

probability that for all x ∈ Ji and all αn,j y
αn,j
n (x) is smaller than (pM)n/4

and its variation in Ji is not greater than (pM)−n/6. Namely the lower bound
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is

p′N = 1− C1C5δ
−1p−5n/6M7n/6

n∑
m=n/L

γ(pM)m/3 (3.13)

This needs a little explanation because Proposition 3.3 was stated for the

vertical case. What we do is estimate the probability y
αn,j
n > (pM)n/4 for a

given αn,j and then as #{αn,j} ≤ C5δ
−1p−5n/6M7n/6 the probability that the

complement event happens for all αn,j will be the one in equation 3.13. Now

we can apply Proposition 3.8 and similarly to the vertical case prove that

with probability

pN > 1− C1C5δ
−1p−5n/6M7n/6

n∑
m=n/L

γ(pM)m/3

− C1C
2
5δ
−2p−5n/3M7n/3

∞∑
m=n

γ(pM)m/3

for all α ∈ [δ, π/2− δ] and x, y ∈ Ii limm→∞ y
α
m(x) exists and

∣∣ lim
m→∞

yαm(x)− lim
m→∞

yαm(y)
∣∣ < (pM)−n/6 +

∞∑
m=n

(2C6 + 1)(pM)−m/6

=

(
1 +

2C6 + 1

1− (pM)−1/6

)
(pM)−n/6 (3.14)

And as we have 4MN intervals the probability that the event does not happen

for at least one interval is less than 4MN(1 − pN), summing this up, and

using Borel-Cantelli Lemma we have that for every sufficiently large N2 the

assertion in Proposition 3.6 holds. As δ is arbitrarily close to 0 Theorem 3.1

follows if δ ∈ (0, π/2), and in the horizontal and vertical case the statement

of the theorem was proved in the previous section.
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Chapter 4

Conclusions

The main part of this thesis was the proof of two statements about the

projection of the Mandelbrot percolation fractal (see Chapter 2), and the

projection of the natural measure in the homogeneous case (see Chapter 3).

The methods in the proofs give us a useful toolbox for considering the proper-

ties of the inhomogeneous Mandelbrot percolation fractal. As we mentioned

before we know a lot about the homogeneous case, but very little about the

inhomogeneous one. A possible way to move on is to consider the abso-

lute continuity of the projection of the natural measure with respect to the

Lebesgue measure in the later case.
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